$V = 1389 (1) \text{ Å}^3$ Z = 4 $D_x = 1.24 \text{ Mg m}^{-3}$	Needle $0.46 \times 0.32 \times 0.14$ mm Colourless	
Data collection	_	
Nicolet P3/F diffractometer	$\theta_{\rm max} = 55^{\circ}$	
$2\theta/\theta$ scans	$h = 0 \rightarrow 9$	
Absorption correction:	$k = 0 \rightarrow 14$	
none	$l = 0 \rightarrow 12$	
1052 measured reflections	2 standard reflections	
930 independent reflections	monitored every 50	
878 observed reflections	reflections	
$[l>2.5\sigma(l)]$	intensity variation: 3%	
Refinement		
Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.70$	
R = 0.034	$\Lambda_{2} = 0.13 \text{ a} \text{ Å}^{-3}$	

R = 0.034	$\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.046	$\Delta \rho_{\rm min} = -0.11 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.30	Atomic scattering factors
878 reflections	from International Tables
175 parameters	for X-ray Crystallography
$w = [\sigma^2(F_o) + 0.07(F_o)^2]^{-1}$	(1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters (Å²)

$B_{\rm eq} = (8\pi^2/3) \sum_i \sum_i U_{ij} a_i^* a_i^* \mathbf{a}_i . \mathbf{a}_j.$

	-			
	x	у	z	Beg
O(1)	0.0425 (2)	0.3937 (2)	0.3419	4.8 (1)
O(2)	0.0870 (3)	0.0234 (2)	-0.1977 (4)	7.2 (2)
O(3)	-0.2376 (3)	0.1382 (1)	-0.1192 (3)	5.3 (1)
C(1)	-0.0583 (3)	0.1515 (2)	0.0375 (4)	4.0(1)
C(2)	-0.0004 (3)	0.2482 (2)	0.0765 (4)	3.3 (1)
C(3)	-0.0134 (3)	0.2761 (2)	0.1934 (4)	3.6 (1)
C(4)	0.0505 (3)	0.3610 (2)	0.2294 (3)	3.6(1)
C(5)	0.1301 (3)	0.4202 (2)	0.1529 (3)	3.6 (1)
C(6)	0.1387 (3)	0.3918 (2)	0.0379 (3)	3.6 (1)
C(7)	0.0744 (3)	0.3077 (2)	-0.0029 (3)	3.4 (1)
C(8)	0.0818 (3)	0.2844 (2)	-0.1304 (4)	4.1 (1)
C(9)	0.0228 (3)	0.1857 (2)	-0.1692 (4)	3.9 (1)
C(10)	0.1517 (4)	0.1096 (2)	-0.1551 (4)	4.9 (2)
C(11)	0.2048 (3)	0.0992 (2)	-0.0304 (4)	4.9 (2)
C(12)	0.0703 (4)	0.0766 (2)	0.0498 (4)	4.8 (2)
C(13)	-0.1057 (3)	0.1567 (2)	0.0869 (4)	3.8 (1)
C(14)	0.2045 (4)	0.5104 (2)	0.1950 (4)	5.3 (2)
C(15)	-0.0295 (5)	0.1907 (3)	-0.2951 (4)	5.5 (2)
C(16)	-0.0430(5)	0.3396 (3)	0.4234 (4)	6.2 (2)

Table 2. Bond lengths (Å) and angles (°)

	0	()	· /
O(1)—C(4)	1.376 (4)	C(5)—C(6)	1.384 (5)
O(1)-C(16)	1.413 (5)	C(5) - C(14)	1.499 (4)
O(2)-C(10)	1.419 (5)	C(6)—C(7)	1.387 (4)
O(3)-C(13)	1.221 (3)	C(7)—C(8)	1.505 (4)
C(1)-C(2)	1.514 (4)	C(8)—C(9)	1.542 (5)
C(1)-C(12)	1.532 (5)	C(9)-C(10)	1.548 (4)
C(1)-C(13)	1.490 (5)	C(9)-C(13)	1.512 (5)
C(2)-C(3)	1.406 (5)	C(9)—C(15)	1.519 (6)
C(2)—C(7)	1.395 (4)	C(10)-C(11)	1.513 (6)
C(3)—C(4)	1.376 (4)	C(11)-C(12)	1.513 (6)
C(4)C(5)	1.392 (4)		
C(4) - O(1) - C(16)	118.1 (3)	C(6)—C(7)—C(8)	119.9 (3)
C(2) - C(1) - C(12)	110.6 (2)	C(7)—C(8)—C(9)	117.6 (3)
C(2)-C(1)-C(13)	109.3 (3)	C(8)-C(9)-C(10)	110.8 (2)
C(12) - C(1) - C(13)	108.6 (3)	C(8)C(9)-C(13)	107.5 (3)
C(1) - C(2) - C(3)	120.6 (3)	C(8)—C(9)—C(15)	109.4 (3)
C(1) - C(2) - C(7)	119.6 (3)	C(10)-C(9)-C(13)	105.7 (3)
C(3) - C(2) - C(7)	119.7 (3)	C(10) - C(9) - C(15)	110.1 (3)
C(2)-C(3)-C(4)	119.9 (3)	C(13)-C(9)-C(15)	113.2 (3)
O(1) - C(4) - C(3)	123.6 (3)	O(2)—C(10)—C(9)	105.9 (2)

© 1993 International Union of Crystallography Printed in Great Britain – all rights reserved

114.9 (2)	O(2)-C(10)-C(11)	111.3 (3)
121.5 (3)	C(9) - C(10) - C(11)	112.5 (3)
117.3 (2)	C(10)—C(11)—C(12)	111.6 (2)
120.7 (3)	C(1)-C(12)-C(11)	110.5 (3)
122.1 (3)	O(3) - C(13) - C(1)	122.5 (3)
123.3 (3)	O(3)—C(13)—C(9)	123.0 (3)
118.1 (3)	C(1)-C(13)-C(9)	114.5 (2)
121.9 (3)		
	114.9 (2) 121.5 (3) 117.3 (2) 120.7 (3) 122.1 (3) 123.3 (3) 118.1 (3) 121.9 (3)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Data were corrected for Lorentz and polarization effects. The structure was solved by direct methods (*TEXSAN*; Molecular Structure Corporation, 1990). The H-atom positions in the CH, CH_2 and CH_3 groups were allowed to ride on the bonded C atoms and refined. The H atom bonded to the O atom was located on a difference Fourier map at an advanced stage of anisotropic refinement and its coordinates refined.

This work was supported by the Consejo Nacional de Ciencia y Tecnologia, CONACYT, project No. 1304-E9205.

Lists of structure factors, anisotropic thermal parameters and H-atom coordinates have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71343 (10 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HA1049]

References

- Clayton, R. B., Henbest, H. B. & Smith, M. (1957). J. Chem. Soc. pp. 1982–1993.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Grob, C. A. (1969). Angew. Chem. Int. Ed. Engl. 8, 535-546.
- Grob, C. A. & Schiess, P. W. (1967). Angew. Chem. Int. Ed. Engl. 6, 1-15.

Molecular Structure Corporation (1990). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

Acta Cryst. (1993). C49, 2141-2143

Structure of 2,4,6-Tri(*tert*-butyl)aniline at 153 K

EHMKE POHL, REGINE HERBST-IRMER, KATRIN KÖHLER, HERBERT W. ROESKY AND GEORGE M. SHELDRICK*

Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany

(Received 1 December 1992; accepted 9 June 1993)

Abstract

The structure of 2,4,6-tri(*tert*-butyl)aniline is reported. The molecule lies on a crystallographic twofold axis.

Comment

Alkoxides and amides of the later transition metals are often difficult to study as they tend towards extensive association and low solubility in hydrocarbon solvents (Bradley, Mehrota & Gaur, 1978). The use of sterically demanding substituents, such as adamantyl, triphenylmethyl or 2.4.6-tri(tert-butyl)phenyl, reduces alkoxide and amide bridging and improves solubility (Bartlett, Ellison, Power & Shoner, 1991). 2,4,6-Tri(tert-butyl)aniline thus could be a suitable ligand to reduce association in metal amides. The molecule lies on a crystallographic twofold axis. The disordered para-tert-butyl group was refined with distance restraints for the 1-2 and 1-3 distances to an occupancy of 0.5:0.5 for the two positions. The position of the amino H atom was refined with a distance restraint for the N-H bond length. All bond lengths and angles are generally as expected.

Fig. 1. Structure of the title compound showing 50% probability displacement ellipsoids. The H atoms except H1 are omitted for clarity.

C10

C11

Experimental

Crystal data

C ₁₈ H ₃₁ N	Mo $K\alpha$ radiation	NI-H
$M_r = 261.44$	$\lambda = 0.71073 \text{ Å}$	CI-C
Orthorhombic	Cell parameters from 64	C2C
Pnma	reflections	C2—C
a = 9.2210 (10) Å	$\theta = 10 - 12.5^{\circ}$	C3-C
b = 18.157 (2) Å	μ = 0.057 mm ⁻¹	C1_N
c = 10.3180 (10) Å	T = 153 (2) K	C2 ⁱ -C
V = 1727.5 (3) Å ³	Prism	C2—C
Z = 4	$0.4 \times 0.3 \times 0.3$ mm	C3—C
$D = 1.005 \text{ Mg m}^{-3}$	Colorless	C3-C
$D_x = 1.003$ Mg III	Coloness	C1-C
		C4—C
Data collection		C3C
		~~ ~

 $R_{\rm int} = 0.0246$

 $\theta_{\rm max} = 24.98^{\circ}$

Stoe Siemens AED fourcircle diffractometer

Profile data from $2\theta/\omega$ scans
Absorption correction:
none
0140 1 0

- 2149 measured reflections 1567 independent reflections
- 1321 observed reflections
- $[I > 2\sigma(I)]$

Refinement

N1 C1 C2 C3 C4

C6 **C**7

C8

C9

C5 C10 C11 C12

Refinement on F^2 $R[F > 4\sigma(F)] = 0.052$ $wR(F^2) = 0.166$ S = 1.0861564 reflections 116 parameters Only coordinates of H atoms refined

$h = -3 \rightarrow 10$ $k = -21 \rightarrow 21$

 $l = -12 \rightarrow 12$

3 standard reflections frequency: 90 min intensity variation: none

Calculated weights $w = 1/[\sigma^2(F_o^2) + (0.0799P)^2$ +0.5768P] where $P = (F_o^2 + 2F_c^2)/3$ $\Delta \rho_{\rm max} = 0.24 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.18 \ {\rm e} \ {\rm \AA}^{-3}$ Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4

Refinement on F^2 for all reflections except for three with very negative F^2 or flagged by the user for potential systematic errors. Data collection: DIF4 (Stoe & Cie, 1988a). Cell refinement: DIF4. Data reduction: REDU4 (Stoe & Cie, 1988b). Program(s) used to solve structure: SHELXS-90 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL-92 (Sheldrick, 1992). Molecular graphics: SHELXTL-Plus (Sheldrick, 1991). Software used to prepare material for publication: SHELXL-92.

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$$U_{\rm eq} = \frac{1}{3} \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

x	у	z	U_{eq}
0.0978 (2)	0.7500	0.3241 (2)	0.0423 (10)
0.2317 (2)	0.7500	0.3911 (2)	0.0282 (10)
0.2962 (2)	0.68253 (8)	0.42781 (13)	0.0314 (7)
0.4273 (2)	0.68500 (8)	0.49517 (14)	0.0346 (8)
0.4961 (2)	0.7500	0.5294 (2)	0.0336 (10)
0.2234 (2)	0.60754 (9)	0.4007 (2)	0.0478 (10)
0.2100 (3)	0.59136 (11)	0.2551 (2)	0.0711 (13)
0.3113 (3)	0.54316 (11)	0.4590 (3)	0.0870 (15)
0.0732 (2)	0.60425 (11)	0.4673 (2)	0.0647 (11)
0.6405 (2)	0.7500	0.6046 (2)	0.0433 (10)
0.6210 (4)	0.7132 (3)	0.7336 (3)	0.070 (2)
0.6941 (4)	0.8324 (2)	0.6332 (4)	0.057 (2)
0.7568 (3)	0.7152 (2)	0,5246 (4)	0.053 (2)

Table 2. Geometric parameters (Å, °)

N1-C1	1.415 (3)	C6C7	1.536 (3)		
N1—H1	0.921 (9)	C6—C8	1.544 (3)		
C1-C2	1.413 (2)	C6—C9	1.547 (3)		
C2C3	1.396 (2)	C5-C12	1.494 (4)		
C2—C6	1.544 (2)	C5-C10	1.500 (4)		
C3—C4	1.386 (2)	C5-C11	1.603 (4)		
C4C5	1.541 (3)				
C1-N1-H1	114 (2)	C2-C6-C8	111.7 (2)		
C2 ⁱ -C1-C2	120.2 (2)	C7-C6-C9	110.8 (2)		
C2-C1-N1	119.9(1)	C2-C6-C9	110.1 (2)		
C3-C2-C1	118.0(1)	C8-C6-C9	105.6 (2)		
C3-C2-C6	119.7 (1)	C12-C5-C10	112.9 (2)		
C1-C2-C6	122.2 (2)	C12-C5-C4	110.0 (2)		
C4-C3-C2	123.4 (2)	C10-C5-C4	110.1 (2)		
C3C4C5	121.6(1)	C12-C5-C11	105.9 (2)		
C7—C6—C2	112.4 (2)	C10-C5-C11	106.8 (3)		
C7—C6—C8	106.1 (2)	C4-C5-C11	111.1 (2)		
	Symmetry code: (i) $x, \frac{3}{2} - y, z$.				

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71389 (8 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: SE1024]

References

- Bartlett, R. A., Ellison, J. J., Power, P. P. & Shoner, S. C. (1991). Inorg. Chem. 30, 2888-2894.
- Bradley, D. C., Mehrota, R. C. & Gaur, D. P. (1978). *Metal Alkoxides*. New York: Academic Press.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

- Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1992). SHELXL-92. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Stoe & Cie (1988a). DIF4. Diffractometer Control Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1988b). REDU4. Data Reduction Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (1993). C49, 2143-2145

Etude de la Phenylhydrazone du 3-Benzoyl-1-methylindole

L. TOUPET*

Groupe Matiere Condensee et Materiaux, URA au CNRS 040804, Université de Rennes I, Campus de Beaulieu, 35042 Rennes CEDEX, France

M. SOUFIAOUI

Laboratoire des Cycloadditions, Université Mohammed V, Avenue Ibn Batouta, Rabat, Maroc

R. CARRIE

Groupe de Physicochimie Structurale, UA au CNRS 040704, Université de Rennes I, Campus de Beaulieu, 35042 Rennes, CEDEX, France

(Reçu le 23 octobre 1992, accepté le 21 mai 1993)

Abstract

The Z(s-cis) isomer of 3-benzoyl-1-methylindole phenylhydrazone derived from a 3-aroyl-1-methylindole, was isolated. The structure consists of two molecules with similar conformations in the asym-

© 1993 International Union of Crystallography Printed in Great Britain – all rights reserved metric unit. The dihedral angle ($\approx 55^{\circ}$) between the methyl indole substituent and the hydrazone moiety leads to a break in the delocalization.

Commentaire

Nous avons proposé dans un travail antérieur (Soufiaoui, Laude & Arriau, 1977) que les arylhydrazones des 3-aroyl-1-méthylindoles existent en solution, d'après les observations spectroscopiques, sous deux configurations E et Z difficilement séparables par chromatographie ou par recristallisation fractionnée. Ayant isolé un monocristal d'une seule forme (R = Ph), nous avons soumis ce dernier à une étude en diffraction X. Cette forme correspond à la configuration Z (R en trans de NHPh) (I) prédominante en solution. En substituant R par un groupement éthoxycarbonyl, c'est la forme Z (CO₂Et en *cis* de NHPh) (III) qui prédomine en raison de la liaison hydrogène (Ruccia, Vivona, Piozzi & Aversa, 1969) et qui correspond à E pour R = Ph.

La Fig. 1 montre une vue ORTEP (Johnson, 1965) numérotée des deux molécules qui constituent le motif élémentaire. Au vu de ces résultats on peut remarquer une bonne homogénéité dans la géométrie globale des deux molécules constituant le motif. Cependant ces molécules ne sont pas planes à l'état solide: comme le montre la Fig. 2, le fragment phénylhydrazone de chaque molécule est plan mais forme un angle important avec la partie méthylindole [respectivement 124,5 (3) et 125,3 (3)°] du fait d'effets stériques déterminants dans la rupture de conjugaison. Ces molécules diffèrent légèrement par leur

Fig. 1. Vue ORTEP (Johnson, 1965) du composé (2).